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Abstract-The paper presents developments of a second-moment approximation to turbulent convection in 
which the turbulent heat fluxes themselves form the subject of a set of transport equations. Closure at this 
level avoids the need to prescribe the turbulent Prandtl number which is the principal empirical uncertainty 
in simpler treatments. Applications are reported of heat transfer in a variety of free shear flows and boundary 
layers. While fairly successful overall agreement is achieved, the model does not fully account for the observed 
variations of turbulent Prandtl number from one free shear flow to another and equally gives rather 

inaccurate predictions downstream of a short heated patch in a wall. 

NOMENCLATURE 

mean temperature (or mass fraction of 
some passive contaminant); 
maximum variation of C across shear flow; 
wall value of C; 
‘friction’ temperature, qE./p U,c, ; 
fluctuations in temperature about mean 
value ; 
bulk average value mass fraction ; 
specific heat at constant pressure; 
specific heat at constant volume; 
diameter of pipe; 
additive constants in sublayer wall laws 
[equations (14) and (15)] ; 
turbulence kinetic energy ; 
mean static pressure; 
fluctuation of static pressure about mean 
value ; 
ratio of velocities of slow-velocity : high- 
velocity streams in mixing layer; 
pipe radius; 
Reynolds number based on pipe diameter 
and bulk mean velocity; 
turbulent interaction timescale; 
mean component of velocity in direction x ; 
maximum change in velocity acrdss shear 
flow ; 

friction velocity, J&$ ; 
fluctuation of x component of velocity 
about mean value; 
fluctuation of xi velocity component about 
mean value ; 
fluctuating component of velocity in y 
direction ; 
streamwise coordinate; 
Cartesian coordinates ; 
coordinate normal to x in direction of 
principal gradients; 

Yl, 

Y,:, 

distance from symmetry plane at which 
velocity above or below external stream 
velocity is half of that on symmetry plane; 
distance from symmetry plane at which 
temperature above (or below) external tem- 
perature is half of that on symmetry plane. 

Greek symbols 

6, boundary layer thickness ; 
I:, kinematic dissipation rate of kinetic 

energy ; 

dissipation rate of c2 ; 
similarity coordinate for mixing layer. 
Cross stream coordinate normalized by 
distance between points where velocity 
differs from the adjacent edge value by 10% 
of velocity change across layer; 
similarity variable for scalar field corres- 
ponding to q for velocity field ; 
Von Karman constant (0.42); 
thermal diffusivity ; 
kinematic viscosity ; 
density; 
turbulent Prandtl number; 
wall shear stress. 

1. INTRODUffION 

SECOND-ORDER or second-moment turbulence closures 
which originated with the work of Rotta [l] have been 
extensively used over the past decade for the numerical 
simulation of turbulent shear flows [2-41. With tur- 
bulence models of this type, the second-moment 
correlations representing the turbulent transport of 
momentum, heat or any other scalar are found directly 
from their own (necessarily approximate) transport 
equations. The approach’may be contrasted with the 
usual phenomenological treatment in which, by ana- 
logy with molecular transport, models are devised for 
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the effective turbulent viscosity and effective turbulent 
Prandti or Schmidt number. The reason for preferring 
a second-moment model is that the turbulent in- 
teractions which generate the turbulent stresses and 
heat fluxes can be treated exactly : moreover, for those 
processes which cannot be so handled, a more rational 
and systematic set of approximations can be devised 
than for schemes founded on the notion of effective 
turbulent transport coefficients. 

Applications of models of this type to shear flows of 
engineering interest have been largely limited to 

momentum transport processes. Hitherto, the only 
extensive studies of heat transport phenomena with 
second-moment models have been in relation to 

buoyancy dominated transport processes in the 
Earth’s boundary layer, e.g. references [5-81. These 
closures areespecially appropriate to such flows for, as 
implied above, the direct effects of buoyancy on the 
second-moment correlations ofinterest enter explicitly 
in the system of turbulent transport equations. The 
outcome of such studies has, on the whole, been rather 
encouraging. In several cases experimentally observed 
phenomena, which would be simply impossible if 
turbulence were purely a gradient-driven process, have 
been at least qualitatively predicted. 

It must be said, however, that experimental docu- 
mentation of buoyancy dominated turbulence is at 
present neither particularly precise nor plentiful. The 
question therefore arises as to how well a second- 
moment model would fare in resolving some of the 
paradoxes observed in we//-documented shear flows 
without buoyant contamination. It is this question 
that the present contribution addresses. The only 
earlier study to have considered the same question 
appears to be the Ph.D. thesis of Owen [9]. Owen 
confined attention to flows bounded by walls however, 
and in a number of respects made approximations 
which would fail badly in free shear flows. The present 

study examines several free shear flows as well as cases 
of pipe and channel flow and the developing thermal 
boundary layer. Attention is limited to two- 
dimensional or axisymmetric flows, however. A com- 
panion paper [lo] reports an extension of the scheme 
to two problems of three-dimensional convection. The 
closure p;oposals adopted in this study have in most 
respects appeared elsewhere in the literature. Except 
for the points of novelty therefore, Section 2 provides 
only a brief presentation of the mathematical model 
and the method of numerical solution. Comparison 
between model simulation and experiments is pro- 
vided in Section 3, while an overall assessment is 
attempted in Section 4. 

2. THE PHYSICAL AND MATHEMATICAL MODEL 

a. The turbulence model 

The instantaneous Navier-Stokes and energy equa- 
tions for a low-speed flow of fluid with uniform density 
and transport properties may be written 

a(Ui + Ui) 8 

at + g(ui + ui)(uj + uj) 

= -- ; $(P+p)+v 
I 

a2y; ui) (1) 

I 

C, a(c + 4 a - ~ + G(C + C)(Uj + Uj) 
c 

P 
at 

= 
1 a2(c + C) 

axj (2) 

wherein upper-case letters distinguish mean com- 

ponents of velocity, pressure, and temperature (U, P, 
and C) from the corresponding turbulent fluctuations 
about the mean, denoted by lower-case letters. Other 

symbols appearing in equation (1) and (2) take their 
conventional meanings: definitions are provided un- 

der the Section headed Nomenclature. 
Conventional time averaging of equation (1) and (2) 

over a period that is long compared with that of a 
typical large scale turbulent fluctuation produces for a 

statistically stationary flow 

dUiUj _ 1 ap 
---; G+&(y+j (3) axj 

Exact transport equations for the as-yet unknown 
second-moment correlations in equations (3) and (4) 
are obtained as follows : Equation (1) is multiplied by 
ul; and to this is added the same equation but with 
subscripts i and k interchanged. Upon averaging, the 

following transport equation for ii& is produced: 

;Li,ii;ii; = - u,lr,.dL’, + WjS 
J i axi axj I 

a -- 
axj 

The corresponding equation for G is obtained by 
adding equation (1) multiplied by c to equation (2) 
multiplied by ui. The resultant equation may be 
rearranged as 

&(uiuiC) = - UiUj$X, + 
i 

_ac -au, 
cuj dxj I 

P ac +- --(i+v)$ 2 
P axi J 

- 

_ d 
axj ( G + E &ij 

’ J p 

- au,\ ac 
(‘5) 
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Equations (5) and (6) are not immediately employable 
to find wk and uii since their right hand sides contain 
still further unknowns. In a second-moment closure 
these unknown correlations must be approximated in 
terms of the mean field distributions of velocity and 
temperature, the turbulent stress and heat fluxes, and a 
number of characteristic time scales (usually one) to 
characterize the rate at which the various turbulence 
interactions proceed. 

In the present study the Reynolds stress field has 
been obtained using strictly the closure presented in 
[4]. Here therefore, the set of algebraic relations is 
simply presented in Tabte 1 without further comment. 
The question of closing the corresponding heat flux 
equation [equation (6)] has been examined in detail in 
[l 11. The specific approximations and the underlying 
ideas are considered briefly below. 

At high turbulent Peciet numbers the terms in 
equation (5) containing the molecular transport coef- 
ficients are negligible. For fluids with Prandtl numbers 
of order unity or greater their omission is entirely 
admissible except in the immediate vicinity of wall 
(say, for y+ < 30). In analyzing wall flows in the 
present work we use a correlation of experimental data 
to span this near-wail sublayer. The first pair of terms 
on the RHS of equation (6), representing the gen- 
erative action of mean temperature and velocity gra- 
dients, requires no approximation since it contains 

only the second moments of interest and the mean field 
variables. For these shear flows the next term, the 
pressure-temperature gradient correlation, is far and 
away the most crucial term to approximate. There are 
basically two different types of processes to be repre- 
sented, one arising from purely turbulence interactions 
and a second dse to the presence of mean strain [ll] : 
these interactions are denoted by &<,, and 4iC.2 
respectively. There is a further influence for flows along 
a rigid boundary associated with pressure reflections 
from the wail, (bir.W. Thus symbolically : 

Following Monin [12] and nearly all subsequent 
workers we take 

where T is a time scale and ciC is assumed to be a 
constant. In reference [ll] it was suggested that the 
most appropriate time scale with which to characterize 

i this process would be (kc /cE,)“’ where C, is the 

dissipation rate of 2. At present, however, there 
appears to be no well-tested scheme for obtaining cC : in 
the present work therefore the time scale in equation 
(8) is taken as k/E, i.e. the scalar time scale of the 

Table 1. Model of ref. [4] for calculating the Reynolds stress field 

where 

55 W, ’ axi) 

(8~2 - 2) -____ 
Ii 

D, - ; 4,&, 
> 

and 

I 
k”l2 

- 4~) - 
a” 

c, = 0.11 



1634 B. E. LAUNDER and D. S. A. SAMARAWEERA 

turbulent velocity field. Implications and limitations of 

this assumption are discussed in the following 
section.* 

The mean strain contribution, bit, *, has been neglec- 
ted in many closure schemes, e.g. [2,3,7]. Two other 
models have been in common use, the quasi-isotropic 
model [13] 

(9) 

and the destruction of production hypothesis 

-au. 
bic.2 = C2cUkC l. 

axk 
(10) 

In the limit of vanishingly small anisotropy, equation 
(9) may be shown to be exactly correct. For the highly 
sheared flows considered in this work, however, it 
provides a less satisfactory approximation than equa- 
tion (10). Here therefore, calculations are presented 
only for the latter form with the empirical coefficient 
czC taking the optimized value 0.4, i.e. 40% of the heat 
flux production due to mean strain is assumed oblit- 
erated by pressure interactions. Equation (10) has 
previously been used in [9] and [ll] with cz, 
taking the value 0.5 : the present somewhat lower value 
gives minor improvements in the calculated levels of 
streamwise turbulent heat flux. Although this flux is 
not important in the thin shear flows considered here 
(being swamped by streamwise convection) its effects 
may be significant in recirculating flows. 

Although the wall-reflection effect on the heat fluxes 
does not seem as pronounced as on the Reynolds 
normal stresses, contrary to what had been tentatively 
suggested in [ll], it is not entirely negligible. Two 
schemes for approximation have been tried, one of 
which is the recent proposal of Gibson and Launder 
[8] for analysing turbulence in the Earth’s boundary 
layer. For thin shear flows near a single plane wall 
unaffected by buoyancy their scheme reduces to the 
form 

- 
k3!2 

bic.x, = chwukcnkni - 
CX” 

(11) 

where nk is the unit vector normal to the wall, x, is the 
normal distance from the wall and the coefficient c:.,,,. 
takes the value 0.25. The second formulation, evolved 
in the present work, was designed to parallel as closely 
as possible, the near-wall pressure-reflection model for 

* Lumley [37] has recently constructed the framework of a 
far more comprehensive approximation of &, than is 
attempted here. 

t Again, more elaborate treatments of the transport terms 
are available in the literature [37]. Our view is that the 
particular set offlows examined here does not allow a decisive 
choice to be made among the different strategies owing to the 
uncertainties in modelling the other, more influential 
interactions. 

the Reynolds stresses, c&.,, given in Table 1. The form 
adopted was 

The coefficients cC1, (y and & have been given the values 
0.1 and 0.02 to bring accord with the levels of heat 
fluxes normal to the wall and in the streamwise 
direction in an equilibrium flow near a wall. 

For the case of flow in straight ducts, pipes or 
subchannels where surfaces may be non-planar the 
effective distance from the wall must usually be found 
by integration. From several possible forms the follow- 
ing has been chosen as the most plausible simple 
expression : 

1 I 2n d0 -=- 
1 X” 2 0 r 

where I is the length of the line joining the point in 
question to a point on the surface, and 0 is the angle 
subtended between this line and some reference line. 
With this form, for the case of an infinite plane wall the 
original expression is recovered. In the case of a circular 
sectioned pipe of radius R, the following expression is 
obtained : 

11” (1 - bcosB)de _=- 
X” 2R s 0 (1 + b2 - 2bcosB)3’Z 

where b = (R - y)/R, y being the distance from the 
pipe wall. The diffusion terms in equation (6) are 
approximated as 

The above form appeared to give the best overall 
agreement among several versions considered, cf. 
[ 1 l] : the predictions, however, were only marginally 
different for the different flows examined here provided 
the single empirical coefficient was appropriately 
chosen. By analogy with the stress-diffusion model 
shown in Table 1 the c, has been taken as 0.11. This 
may not represent the best value, though it is unlikely 
to differ by more than about 50% from the 0ptimum.t 

b. Solution of equations 
Use of the model of turbulence described above for 

heat transport in two-dimensional or axisymmetric 
thin shear flows requires solution of transport equa- 

tions for the Reynolds stresses u:, u:, u:, and u,u2 (x, 
denoting the streamwise direction and x2 the direction 
of principal gradient of velocity and temperature), for 
the energy dissipation rate c and for the turbulent heat 
flux w, in addition to the dependent variables for the 
mean field. In addition, the streamwise heat flux ~4 is- 
calculated according to the model proposals since it is 
an easier quantity to measure than u2c and has 
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frequently been reported in the literature. [Com- 
parisons with this streamwise heat flux provides an 
important test of the process denoted by 4ic.2 since 
there is no contribution from equation (10) in the 
equation for uzc.]* 

In the diffusive terms on the right-hand sides of the 
transport equations for turbulence variables only the 
cross-stream component is of significance ; a parabolic 
‘marching’ solution may therefore be adopted. We 
have used the widely known finite-difference method of 
Patanakar and Spalding [t5] as the basis for the 
numerical solution. The original scheme was for- 
mulated for use with an ‘effective viscosity’ scheme for 
modelling turbulent transport however, and thus a 
number of modifications to the basic structure had to 
be introduced in the present work. The most important 
of these was the decision to stagger the location of 
nodes for the turbulence variables relative to mean- 
field nodes. This staggering saved a modest amount of 
computer time (since fewer interpolations were in- 
volved) and, more importantly, rendered the system of 
equations highly stab1e.t Typically 22 nodes across the 
shear flow were used. At the initial station these were 
distributed so as just to cover the region of interest; as 
the calculation proceeded downstream the width of the 
grid adjusted so as to enclose all the flow domain with 
significant gradients in at least one of the dependent 
variables. Solution of these equations for a typical flow 
required about 6 s execution time on a CDC 7600. 
Thus, despite the relative complexity of the model, it is 
economically feasible to use the scheme for studying 
practically interesting engineering flows. 

In most of the flows studied the calculated flow 
pattern achieved an asymptotic form that was inde- 
pendent of the initially prescribed distribution of 
dependent variables. In the two non-equilibrium flows 
where the initial, n5n-eq~j~ibr~~~ region was the focus 
of study, the heat (or mass) transfer did not begin until 
well downstream of the hydrodynamic origin of the 
shear flow. Accordingly, none of the differences be- 
tween experiment and calculation can be attributed to 
uncertainties in initial conditions, 

The following practices were followed in applying 
boundary conditions: At a plane or axis of symmetry - 
the values of u2c and U,U~ are set to zero while the 
normal gradient of all other dependent variables is 
made to vanish there. At a quiescent free-stream edge 
the temperature and velocity are set equal to their free- 
stream values, the heat fluxes are set to zero while very 
small positive levels of turbulence energy and energy 
dissipation rate are assigned, thedistribution ofenergy 
among the components being isotropic. 

_.- -__ - 
* If equation (9) rather than (10) were used, solution of the 

- equation for U,C would be mandatory due to the resultant 
intercoupling of the heat fluxes. 

t A number of workers bad previously found that mean 
velocity profiles tended to develop a saw-tooth variation 
when the shear stress was evaluated at the same positions as 
the mean velocities (e.g. Launder and Morse [16]). 

As indicated in Section 2a, calculations of flow past 
walls did not enter the very thin sublayer adjacent to 
the wall where molecular transport is important. 
Instead the dependent variables were assumed to reach 
local-equilibrium values just outside the sublayer. 
Details for the Reynolds stresses and are given in [4] ; 
for the thermal field 

-w= &/PC, - ig 
.? 

while for the streamwise flux 

uIc = - constant .Yu2c 

where the magnitude of the constant is chosen to be 
compatible with the particular near-wall correction 
used, i.e. equations (11) or (12). Finally a link between 
the wall temperature and heat flux is provided by the 
semi-logarithmic law 

(C - a 1 In E y+ 

c,=z c-2 (14) 

where K’ takes the value 0.465 and E, is an empirical 
function of Prandtl number correlated (in somewhat 
different form) by Jayatilleke [ 173. The present study 
has considered only air at low temperatures for which 
the recommended value of E, is 4.75. 

For the mean velocity field an entirely analogous 
relation is adopted 

where K and E take the (constant) values 0.42 and 11.0 
respectively. 

3. PRESENTATION AND DISCUSSION 01; RESULTS 

Comparisons are made first with three types of free 
shear Ilow and subsequently with flows near walls. To 
simplify presentation we now revert to the usual x, y, z 
notation for Cartesian coordinates with correspond- 
ing velocity fluctuations U, u and w. Throughout, x 
denot*F the principal flow direction and y the direction 
of srgnificant velocity and temperature gradients. 

The first case is that of the plane jet in stagnant 
surroundings. The hydrodynamic properties of this 
flow have been compared (and shown to be in good 
agreement) with the present closure in [4] : attention is 
here limited to the thermal characteristics. The mean 
temperature field has been reported inter alia by Van 
der Hegge Zijnen El8] and Jenkins and Gold~hmidt 
[19]. The calculated behaviour shown in Fig. 1 
displays essentially complete agreement with the mea- 
sured behaviour as does, likewise, the turbulent heat 
flux UC. The turbulent Prandtl number shown in Fig. 2 
displays a nearly uniform level of about 0.6 over the 
inner half of the profiIe, rising steadily over the outer 
half of the jet. 

Comparisons with the plane wake are complicated 
by the fact that the level of shear stress shown in Fig. 3 
is generally predicted too low, so the flow spreads too 
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0 Data of JENKENS and _ 

GOLDSCHMIDT 
A Data of VAN DER 

HEGGE ZIJNEN 

I I1 1 I, I1 I I I1 

-.- Calculated from mean - 

profiles of [19] 

---Calculated from mean- 

FIG. 1. Thermal development of turbulent plane jet in 
stagnant surroundings. (a) Mean temperature profiles, (b) 

Lateral heat flux profiles. 

0 1.0 2.0 

Y/Y% 

FIG. 3. Flow field characteristics of the plane turbulent wake. 
(a) Mean velocity, (b) Turbulent shear stress. 

(a) 
I . . . . I . 

0 1.0 2.0 

Y’&% 

I . . . , 1 

-0.5 0 0.5 

‘C 

FIG. 2. Calculated distribution of turbulent Prandtl number 
in free shear flows. (a) Plane jet (--_) and plane wake 
(- -~ -). (b) Plane mixing layers: R = 0.5 (--); R = 0. 

I . 

. 

0 1.0 2.0 

YlY$ 

0 I.0 2.0 

Y/Y& 

(----J. 
FIG. 4. Thermal characteristics of the plane turbulent wake. 
(a) Mean temperature profile, (b) Lateral heat flux profiles. 
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slowly : moreover, near the outer edge of the wake the 
shear and normal stresses fall to zero too quickly. 
These features naturally influence, in entirely foresee- 
able ways, the mean temperature and heat flux profiles 
which are compared with the measurements of Town- 

send [20] in Fig. 4. Fabris [21] has also made a 
detailed study of the thermal wake, though his data do 
not appear to have extended far enough downstream 
for self-preserving levels of heat fluxes to have been 

reached. It seems likely that the ratio of the heat fluxes 
are, however, insensitive to whether precisely self- 
preserving conditions have been reached ; the present 
predictions of this ratio shown in Fig. 5 are in generally 
good agreement with the data. The calculated turbu- 
lent Prandtl number variation shown in Fig. 2 exhibits 
a distribution rather similar to that of the plane jet 
though attaining somewhat lower values near the 
plane of symmetry and somewhat higher levels in the 
outer region. Although no detailed profiles of turbu- 
lent Prandtl number across a wake appear to have 
been reported in the experimental literature the av- 
erage level obtained in the present calculations is 
essentially correct since the ratio of the half widths of 
the scalar and velocity distributions, 1.16, is the same 
as measured by Fabris. 

The scalar and velocity fields of a plane mixing layer 
with a velocity ratio of 0.5 have been extensively 
documented by Watt [22]. Computations of the 
velocity field (which so far as we know have not been 

reported) are shown in Figs. 6 and 7. Agreement of 
mean velocity and Reynolds stresses is generally close 
though we notice that the calculated turbulent normal 
stresses fall to zero more rapidly than the measure- 
ments towards the high velocity edge. As a con- 
sequence of this, the turbulent heat flux shown in Fig. 8 
also falls abruptly to zero: despite this shortcoming, 
however, the mean temperature field shown in Fig. 9 is 

satisfactorily predicted. The measured ratio of the 

rates of spread of the thermal and velocity layers is 
1.13, a figure that the present calculations match 
within 2”/,. 

Agreement is less satisfactory for the mixing layer 

generated between a moving stream and a stationary 
fluid. There have been many flow-field studies of this 
configuration which served to emphasize how sensitive 
is the spreading rate to the details of the experimental 

1 (a 

-1.o- 

0 Data of WATT [ZZ] 
---Calculated profile m from Watt’s mean 

I data 

/ o ‘, -Model 

FIG. 6. Flow field characteristics of plane mixing layer with 
velocity ratio R = 0.5. (a) Mean velocity profile, (b) Shear 

stress profiles. 

II 1 I iI I ’ II” 

- Model 

l 

3.0 ;L 

Data of FABRIS 

UC 
; 2.0 . 

. 

1.0 . 

o-““““““’ 
0 1.0 2.0 

rI9,x 

FIG. 5. Ratio of streamwise: lateral heat fluxes in plane wake. 
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FIG. 7. Turbulence intensity profiles in plane mixing layer, 
R = 0.5. 

---Calculated from 

0 1.0 

“C 

FIG. 8. Lateral turbulent heat flux in plane mixing layer, 
R = 0.5. 

Data of WATT 

. . - Model 

-1.0 0 1.0 

%z 

FIG. 9. Mean temperature distribution in plane mixing layer, 
R = 0.5. 

apparatus (cf. the review by Rodi [23]). The shear- 
layer spreading rate dii,.,/dx, for the experiment by 
Sunyach and Mathieu [24] is 0.175 which is approx. 
10% greater than predicted by the present model (and 
also about lo:, greater than the mean spreading rate 
of the experiments reviewed in [23]). We might thus 
anticipate that the measured development of the 
temperature field (the moving stream being at a higher 
temperature than the surroundings) would likewise 
show a rate of growth some lo”/, too large. However, 
the measured thermal spreading rate dA.,,/dx of 0.249 
is fully 25% larger than the calculations, while from Fig. 
10 we see that the mean temperature shows a much too 
abrupt change of slope near the high-temperature 
(moving) edge. A similar though less pronounced 
defect is present in the mean velocity field (cf. the 
mixing layer predictions in [4]). Evidently, the sharp 
peaking of the turbulent Prandtl number shown in Fig. 
2b (implying a decrease in effective thermal con- 
ductivity near the edges relative to the effective vis- 
cosity), whiie bringing accord with observed tempera- 
tures near the stationary edge, has exacerbated the 
problem near the high-temperature boundary. 

We now consider three cases of flow near a wall, the 
first being that of fully developed flow in a circular- 
sectioned pipe. The calculated profiles of mean ve- 
Iocity and Reynolds stresses are shown by Sama- 
raweera [25] to be in generally satisfactory agreement 
with the two principal experimental studies, those of 
Laufer [26] and Lawn [27]. The calculations involv- 
ing a non-isothermal flow have attempted to simulate 
the experiments of Bremhorst and Bullock [28,29] at a 
Reynolds number of 34200 in which a uniform heat 
flux was prescribed at the wall. The distributions of 
mean temperature shown in Fig. 11 display close 
agreement with measurement, the profiles for the two 
different wall-effect functions bracketing the experi- 
mental data. The axial component of heat fiux ii~ which 
appears in Fig. 12 is in highly satisfactory accord with 
the measurements : the two different wall-effect func- 
tions [equations (11) and (12)] give slightly different 
near-wall distributions, though for this particular case 
it is difficult to distinguish which version is the better. 

0 Data of 
SUNYACH and 
MATHIEU @4] 

-- - Model 

FIG. 10. Mean temperature profile in plane mixing layer in 
stagnant surroundings, R = 0.0. 
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The calculated distribution of turbulent Prandtl num- 
ber shown in Fig. 13 displays a nearly uniform level of 
about 0.9 near the pipe wall falling to a value just over 

0.6 at the axis. This is a similar distribution to that 
recommended for calculating heat transport in boun- 
dary layers ; Rotta [30], for example, proposes Pr, = 

0.9 -O.S(y/S), 6 being the boundary layer thickness. 

c-c, 
c,-c 

W 

1.0 

0.5 

Ooo.5 
FIG. 11. Mean temperature profile in fully developed pipe 

flow. 

UC /u,c, 

2.0 

1.0 

-Model (Eq (12)) 

FIG. 12. Streamwise heat fluxes in fully developed pipe flow. 

1.0 

Ot 

I I I I 1111 i 

0 0.5 1.0 

YIR 

FIG. 13. Calculated profile of turbulent Prandtl number in 
fully developed pipe flow. 

Figures 14 and 15 also relate to fully developed 
hydrodynamic flow in a pipe but now with the very 
different scalar boundary conditions studied by 
Quarmby and Anand [31]. A short porous ring, 
nominally 1.5 diameters in length, was inserted in the 
pipe and through this a foreign gas was injected at 

sufficiently low flow rates for the velocity field to be 
negligibly affected. Measured concentration profiles 
were obtained at the downstream end of the injection 
region (X/D = 1.49) and at four other stations as 
indicated in Fig. 14. The computations of this flow 
began upstream of the injection patch and exhibit 
excellent agreement at the first station. Thereafter, 
however, the calculated level of concentration at the 
wall falls more rapidly than do the measurements due 
to a more rapid radial dispersal of the tracer gas. 
Evidently, the predicted turbulent thermal conduc- 
tivity is too high (by about 15%) or, equivalently, the 
turbulent Schmidt number is too low. The develop- 
ment of the latter parameter is shown in Fig. 15. As the 
foreign gas disperses towards the pipe axis the calcu- 
lated turbulent Schmidt number falls to around 0.8 
near the wall and to levels below unity wherever there 
are significant concentration gradients. Quarmby and 
Anand [31] in fact achieved closer agreement between 
their computations and measured behavior than 
that obtained in the present study by choosing a 
Schmidt number equal to unity throughout. The main 

6.0 ” 

Data of QUARMBY and ANAND hd 

5.0 - Symbol X/D 

0 1.493 

4.0- A 3.558 
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& l a.208 
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x 19.058 

0 0 0 0 0 0.5 1.0 
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FIG. 14. Development of concentration profiles downstream of a short region of mass transfer through the 
pipe wall. 
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FIG. 15. Development of profiles of turbulent Schmidt number downstream of short region of mass transfer 
at pipe wall. 

cause for the relatively poor agreement obtained with 
the present closure appears to be the choice of the 
turbulence energy turnover time (lilt:) as the character- 
istic time scale in the heat flux equation: the topic is 
discussed further in Section 4. 

The final flow considered is that of a thermal 
boundary layer growing on a flat plate where an initial 
portion of the plate is unheated. Far enough from the 
start of heating the thermal layer will grow to the same 
thickness as the velocity shear layer; distributions 

of turbulent Prandtl number and other thermal 
characteristics will then become rather similar to the 
case of fully developed pipe flow. The present 
interest, however, is with the initial region immediately 
after the step in heat flux, where the thermal layer is 
thin, and for which Antonia, Danh and Prabhu [32] 
have recently reported extensive turbulence data. The 
distributions of heat fluxes Eand macross the thermal 

boundary layer presented in Fig. 16 exhibit generally 
satisfactory agreement. The streamwise heat flux pro- 

-Model (Eq (12)) . 

- -- (Eq (11)) - 

_ (a) 

-Model (Eq. (12)) 

--- (Eq. (11)) 

FIG. 16. Turbulent heat fluxes in turbulent boundary layer with step in wall heat flux (for key to symbols see 
Fig. 17). (a) Lateral heat fluxes, (b) Streamwise heat fluxes. 
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files suggest that equation (11) provides a somewhat 
more satisfactory near-wall correction than equation 
(12) while, for the flux normal to the wall, the two 
schemes produce essentially the same profiles. There is 
less satisfactory accord with the mean temperature 
profiles shown in Fig. 17. There are really two types of 
near-wail discrepancy. The first is that the coefficient 
E, which appears in the near-wall boundary-condition 
for the temperature [equation (14)] is not constant 
when the thermal boundary layer is very thin. This 
feature does not seem to have been reported before 
(Antonia et al. [32] did not present their results in this 
form) though one may remark that the direction of the 
variation seems to accord with an effect on the uelocity 

profiles found in low-Reynolds-number pipe flow [33] 
and in boundary layers formed between converging 
plane walls [34]. In these cases it is found that when 
there is a significant decrease in total shear stress 
across the viscosity-dependent region (greater than 
about 5”/,) there is a substantial increase in the 
constant E in equation (15). In the present case there is 
a decrease in heat flux across this sublayer and we 
likewise observe an increase in E,. We do not at this 
stage attempt to prove that the former causes the latter 
though the fact that the experimental near-wall tem- 
peratures gradually approach the predicted line with 
passagedownstream is at least consistent with this idea 
(i.e. the thermal layer thickness 6, increases with x and 
thus gradients of heat flux normal to the plate become 
less steep). This defect in predicting the temperature 

5.1 - 

11.4 _ 

19.9 

26.7 - 

42.9 

Model 
(Eq. ilZ)l_ 
(Eq. 1111) 

FIG. 17. Mean temperature profiles in flat plate boundary 
layer with step in wall heat flux. 

* Fulachier studied the development downstream of a step 
in wall temperature. In turbulent flow however we may expect 
this to produce negligibly different profiles than arise for a . - 

profile arises in the boundary condition and it is thus 
not one that can properly be levelled at the present 
model which is concerned only with the high Reynolds 
number region. 

Another difference that becomes particularly evi- 
dent at the later stations is that the slope of the 
measured temperature profile is markedly greater than 
the calculated one. This suggests that the predicted 
thermal diffusivity is too high or, equivalently, the 
turbulent Prandtl number too low. Figure 18 confirms 
that the predicted level of u, at the final station is indeed 
lower than the measured levels by 15-60%. Included 
on this figure, however, are experimental data from the 
earlier studies of Fulachier [35] and Blom [36] of 
nominally the same flow* and these measurements are 
in much closer agreement with the present calculation. 
While it does not seem possible to isolate the origin of 
this difference between the experiments of [3 l] and the 
other cited cases it may be relevant that levels of 
turbulent shear stress and heat flux measured by 
Antonia et al. [31] are too low by some 25 and 20% 
respectively to support the experimentally observed 
growth of the boundary layer. The suggestion seems to 
be that the flow is converging (possibly due to the 
formation of boundary layers on the side wall of the 
wind tunnel) though it is not obvious why this should 
lead to abnormally high levels of turbulent Prandtl 
number. Ultimately, further experiments may be 
needed to resolve the paradox. 

4. CONCLUDING REMARKS 

The previous section has considered the prediction 
of heat or scalar transport in a variety of two 
dimensional shear flows. Generally, the second- 
moment turbulence closure used for the calculations 
has achieved an encouraging level of agreement. 

‘Nevertheless, detailed differences have emerged in the 
course of comparing calculation with experiment; it is 
appropriate therefore to close by noting directions in 
which the current model may be improved. 

The most serious conceptual weakness is the ab- 

FIG. 18. Turbulent Prandtl number distribution in flat plate 
boundary layer. 0 Data of Antonia et al. [32] at x/& = 42.9, 
A data of Blom [36], (.-. -) data of Fulachier [35], (-) 

present predictions. step m heat ttux. 
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sence of a timescale that is properly characteristic of 

the fluctuating scalar field like c*/c,. In the case of 
diffusion from a ring source examined in Fig. 14, the 

production rate of cz falls dramatically downstream of 
the source because mean scalar gradients near the wall 
are then small (cf. [ 111, p. 262 for a discussion of the 

balance equation for 3). Consequently, c*/E, decreases 
downstream of the patch because I:,, the dissipation of 

c* by molecular action, occurs in the fine scale motions 
which respond only slowly to changes in the mean 

field. In the present scheme c’/c, is assumed pro- 
portional to k/c which is entirely unaficted by the 
scalar field, and as a result the use of equation (8) will 

produce values for rjic,, which are smaller than if c*/r:, 
had been available for use as a time scale. Now, &. 1 is 

3. C. du P. Donaldson, A progress report on an attempt to 
construct an invariant model of turbulent shear flows, 
Proc. AGARD Conf. on Turbulent Shear Flows, London, 
Paper B-l, AGARD CP-93 (1972). 

4. B. E. Launder, G. J. Reece and W. Rodi, Progress in the 
development of a Reynolds-stress turbulence closure, J. 
Fluid Mech. 68, 537 (1975). 

5. J. C. Wyngaard and 0. R. Cote, The evolution of a 
convective planetary boundary layer-A higher order 
closure model study, Bound-Layer Meteorol. 7, 289 
(1974). 

6. J. L. Lumley and 0. Zeman, Buoyancy effects in entrain- 
ing turbulent boundary layers: A second order closure 
study, in Turbulent Shear Flows-I, P. 295. Soringer. 
Berlin (1979). 

. 1. 

7. 

8. 

- 
effectively the sink term in the uic equation: it is thus 
the process which prevents the scalar flux correlation 
from growing, indefinitely. So if the sink term is too 

small, the scalar fluxes will be too large, leading in turn 
to the observed too rapid rate of spread. When we 
began the present study the uncertainties and obstacles 
in formulating a diagnostic transport equation for c, 
seemed sufficiently formidable to make us explore first 
how far one could get without it. Its development, 

however, now seems appropriate. 

9. 

10. 

11. 

12. 
Improvements in the modelling of the other 

pressure-interaction and diffusion processes in equa- 
tion (6) can doubtless be devised in the next few years. 
At present, however, defects in predicting the scalar 
field often spring principally from shortcomings in the 
hydrodynamic model. This is certainly the case for the 
plane wake and is at least partly so for the mixing layer 
with a stagnant stream. An inference is that even those 

ultimately interested only in the scalar field may need 
to focus on improving the Reynolds stress and dissi- 
pation equations to obtain a sufficiently reliable 

scalar-flux predictor. 

13. 

14. 

15. 

16. 

Finally, the large and initially surprising error in the 
log-law thermal boundary condition that is evident in 

Fig. 17 helps to emphasize that practically nothing is 
yet known about the scalar transport mechanisms in 
the immediate near-wall region. This is an area where 

sustained research over a number of years will be 

needed to achieve a satisfactory level of 

comprehension. 
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APPLICATION D’UNE FERMETURE DE SECOND MOMENT AU TRANSPORT 
TURBULENT DE CHALEUR ET DE MASSE DANS DES ECOULEMENTS 

A CISAILLEMENT MINCE I-TRANSPORT BIDIMENSIONNEL 

R&sum-On ddveloppe une approximation de second moment pour la convection turbulente dans laquelle 
les flux thermiques turbulents forment eux-m2me la base d’un systeme d’huations de transport. A ce niveau, 
la fermeture necessite la formulation du nombre de Prandtl turbulent qui est I’incertitude empirique 
principale. On donne des applications g une varidte d’boulements & cisaillement et g couche limite. Tandis 
qu’on obtient un bon accord, le modkle ne peut rendre compte complttement des variations observtes du 
nombre de Prandtl turbulent d’un &coulement 9 I’autre et aussi il donne des r&hats plutGt imp&is en aval 

d’une courte tache chaude sur une paroi. 

ANWENDUNG EINES DREHIMPULS-TURBULENZ-MODELLS AUF WiiRME- 
UND STOFFTRANSPORT IN DUNNEN SCHERSTROMUNGEN 

Zusammenfassung-Dieser Beitrag beschreibt die Entwicklung einer Drehimpuls-Niiherung fiir turbulente 
Konvektion, wobei die turbulenten Wlrmestriime selbst Gegenstand der Behandlung in einem Satz von 
Transportgleichungen sind. Ein AbschluD auf dieser Ebene vermeidet die Notwendigkeit, die turbulente 
Prandtl-Zahl vorschreiben zu miissen, die bei einfacheren Behandlungen die gri%te empirische Unsicherheit 
darstellt. Faber die Anwendungen aufden Wlrmetransport in einer Vielzahl von freien ScherstrGmungen und 

Grenzschichten wird berichtet. 

IlPWMEHEHME MOMEHTHOR MOAEJIM BTOPOrO IlOPxflKA K MCCJlEAOBAHMIO 
TYPEYJIEHTHOI-0 TEflJIO- M MACCOllEPEHOCA B TOHKMX CflBMrOBblX 

IlOTOKAX: ABYXMEPHbIfi CJIYsAfi 

AHHOTIIUIW- B pa6oTe rIpQWTaBJIeH0 hp&iflOXEHHe MOllenR BTO~O~O nOpnnKa K paCCMOT~HAI.2 

npOWCCOB Typ6j'neHTHOrO IIePeHOCa. B 3TOM Cny'iae Typ6yneHTHble ~OTOKI( Tenna 0npenenntO-r 

I$OpMj' YpaBHeHHii NISI MOMeHTOB. 3aMbIKaHHe Y~BHeHLifi Ha YpOBHe MOAenW BTOpOrO nopanlta 
"03BOnReT He npH6WaTb K JaLIaHWO Typ6,'neHTHOrO 'IHCna n~HnT,,fl. VT0 "pHHUH,,HanbHO BHOCWT 

3MnapesecKyw,HeOnpeaeneHHocTbHa 6onee HW3KOM)'POBHeMOLWWpOBaHHll Typ6yneHTHOrO nepeltoca. 
PaCCMOTpeH PRiT 3aila'l Typ6yneHTHOrO IIepHOCa B CBO6OnHbIX N 'iI,,HCTeHHbIX TeYeHWHX. XOTR 

p3j'nbTaTbI PaCWTa HaXOnlTCIl B iIOCTaTO'iH0 XO~"IeM COrnaCHW C OnbITOM, OnHaKO npennOxeHHaR 

MOllenb HWOCTaTOVHO )'nOBneTBOpHTenbHO OIIHCbIBaeT T)'p6)'JIeHTHOe 9ACnO npHnTnR nJIS pa-J- 

nW4HbIX TeWHBii BLlaeT HeBepHbIe ~3)'nbTaTbINIfl Te'ieHHIl 38 KOPOTKAM HW~TbIM ,'9;LCTKOM. 


